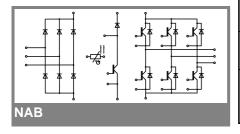


MiniSKiiP®3

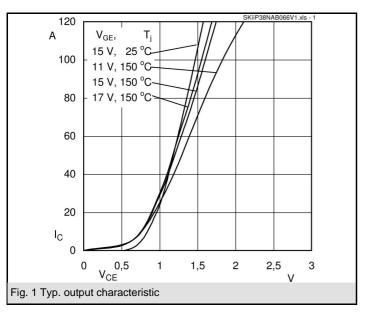
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SKiiP 38NAB066V1**

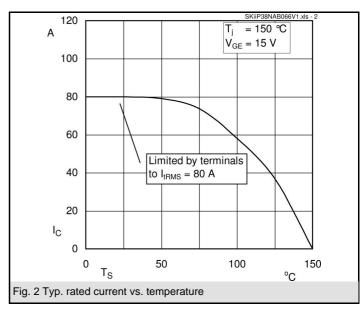
Features

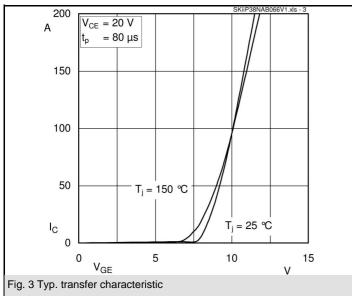

- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

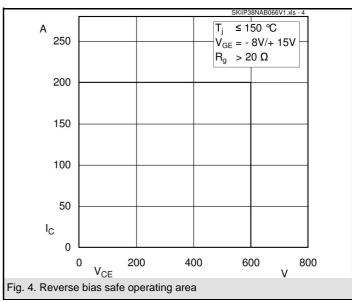
Typical Applications*

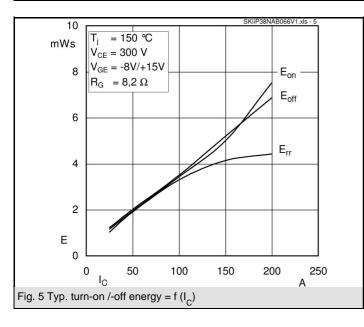
- Inverter up to 22 kVA
- Typical motor power 11 kW

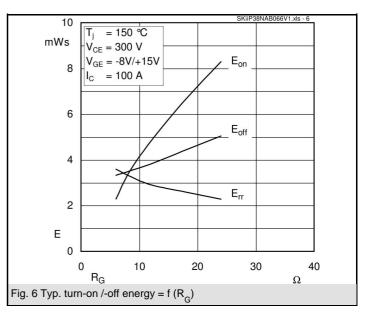

Remarks

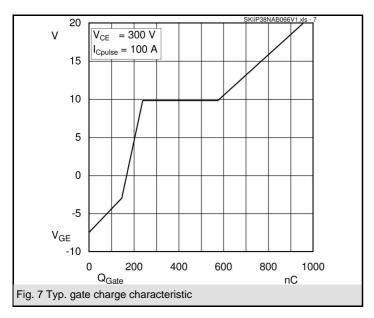

- Case temperature limited to T_C = 125°C max.
- · Product reliabilty results are valid for $T_i = 150$ °C
- SC data: $t_p \le 6 \ \mu s; \ V_{GE} \le 15 \ V; \ T_j = 150^\circ C; \ V_{CC} = 360 \ V$ $V_{CEsat}, \ V_F = chip \ level \ value$

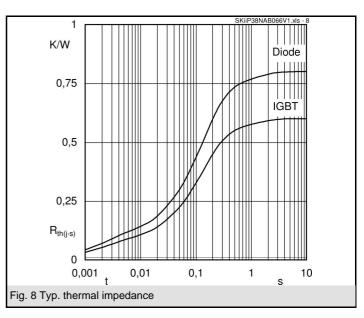


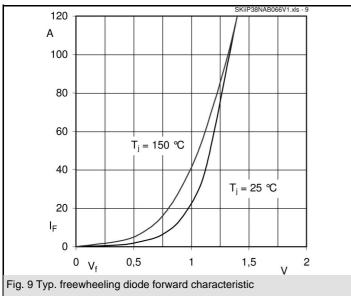

Absolute Maximum Ratings T _S = 25°C, unless otherwise specified							
Symbol	Conditions	Values					
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 150 ^{\circ}\text{C}$	101 (68)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	112 (83)	Α				
I _{CRM}	$t_p = 1 \text{ ms}$	200	Α				
V_{GES}		± 20	V				
Diode - Inverter, Chopper							
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	103 (67)	Α				
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	112 (81)	Α				
I _{FRM}	t _p = 1 ms	200	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	61	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	700	Α				
i²t	t_p = 10 ms, sin 180 °, T_j = 25 °C	2400	A²s				
I _{tRMS}	per power terminal (20 A / spring)	80	Α				
T _i	IGBT, Diode	-40+175	°C				
T _{stg}		-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

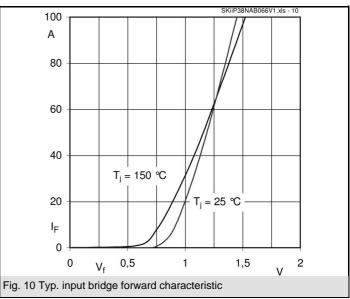

Characteristics T _S = 25°C, unless otherwise specified									
-	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CE(sat)}	I _{Cnom} = 100 A, T _j = 25 (150) °C	1,05		1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2$ mA		5,8		V				
V _{CE(TO)}	$T_j = 25 (150) ^{\circ}C$		0,9 (0,8)	1,1 (1)	V				
r _{CE}	$T_j = 25 (150) ^{\circ}C$		5,5 (8,5)	7,5 (10,5)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		6,15		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,12		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,9		nF				
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ				
$R_{th(j-s)}$	per IGBT		0,6		K/W				
t _{d(on)}	under following conditions		40		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -8 \text{V/+ } 15 \text{V}$		40		ns				
$t_{d(off)}$	I _{Cnom} = 100 A, T _j = 150 °C		410		ns				
t _f	$R_{Gon} = R_{Goff} = 8.2 \Omega$		50		ns				
$E_{on} \left(E_{off} \right)$	inductive load		3,4 (3,5)		mJ				
Diode - In	verter, Chopper								
$V_F = V_{EC}$	I _F = 100 A, T _i = 25 (150) °C		1,3 (1,3)	1,5 (1,5)	V				
V _(TO)	T _i = 25 (150) °C		0,9 (0,8)	1 (0,9)	V				
r _T	T _i = 25 (150) °C		4 (5)	5 (6)	mΩ				
R _{th(j-s)}	per diode		0,8		K/W				
I _{RRM}	under following conditions		102		Α				
Q _{rr}	I _{Fnom} = 100 A, V _R = 300 V		15,4		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_i = 150^{\circ}\text{C}$		3,3		mJ				
	di _F /dt = 2560 A/μs								
Diode - Rectifier									
V_{F}	I _{Fnom} = 35 A, T _i = 25 °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	T _i = 150 °C		11		mΩ				
$R_{th(j-s)}$	per diode		0,9		K/W				
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanical Data									
w			97		g				
M_s	Mounting torque	2		2,5	Nm				

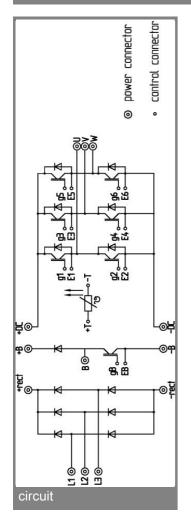


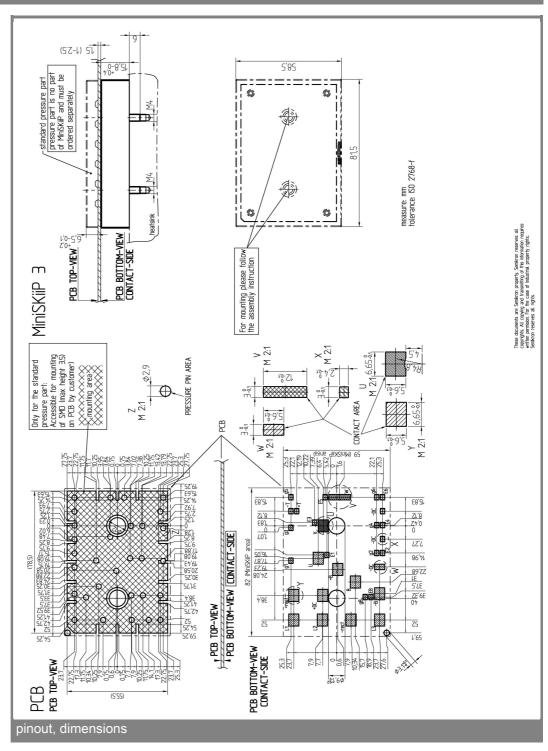









© by SEMIKRON



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.