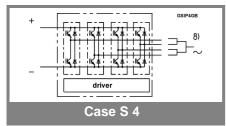

SKiiP 1092GB170-4D

SKiiP[®] 2

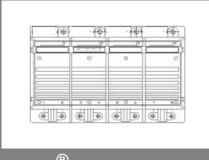
2-pack - integrated intelligent Power System

Power section


SKiiP 1092GB170-4D

Power section features

- SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- AC connection busbars must be connected by user, copper busbars available on request


Absolute Maximum Ratings		$_{\rm s}$ = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}		1700	V			
V _{CES} V _{CC} ¹⁾	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1000 (750)	А			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	1000 (750)	А			
I _{FSM}	$T_{j} = 150 \text{ °C}, t_{p} = 10 \text{ ms}; \text{ sin.}$	8640	А			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA²s			
T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characte	Characteristics T _s = 25 °C unless otherwise specified							
Symbol	Conditions			min.	typ.	max.	Units	
IGBT								
V _{CEsat}	I _C = 800 A,		25) °C			3,3 (4,3)	-	V
V _{CEO}	T _j = 25 (12					,	2 (2,3)	V
r _{CE}	$T_j = 25 (12)$					2 (2,9)	2,4 (3,3)	mΩ
I _{CES}	V_{GE} = 0 V,	$V_{CE} = V_{CE}$	ES,			(60)	4	mA
	T _j = 25 (12							
E _{on} + E _{off}	I _C = 800 A,	, V _{CC} = 90	0 V				690	mJ
	T _i = 125 °C	C, V _{CC} = 12	200 V				1017	mJ
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,13		mΩ
L _{CE}	top, bottom					3,8		nH
C _{CHC}	per phase,	AC-side				3,2		nF
Inverse o	diode							
$V_{F} = V_{FC}$	I _F = 800 A,	T _i = 25 (1	25) °C			2,3 (2,1)	2,9	V
V _{TO}	T _i = 25 (12	5) [′] °C				1,3 (1)	1,6 (1,3)	V
r _T	$T_{i} = 25 (12)$	5) °C				1,3 (1,4)	1,6 (1,7)	mΩ
Err	$I_{\rm C} = 800 {\rm A},$, V _{CC} = 90	0 V				85	mJ
	T _j = 125 °C	C, V _{CC} = 12	200 V				101	mJ
Mechani	cal data							
M _{dc}	DC termina	als, SI Unit	s		6		8	Nm
M _{ac}	AC termina	als, SI Unit	S		13		15	Nm
W	SKiiP [®] 2 S	ystem w/o	heat sink			3,5		kg
w	heat sink					8,5		kg
Thermal	characte	ristics (P16 hea	t sink; 2	75m ³ /h);	", " refer	ence to	
temperat	ture sens	or				I		
R _{th(j-s)I}	per IGBT						0,02	K/W
R _{th(j-s)D}	per diode						0,067	K/W
R _{th(s-a)}	per module	9					0,033	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	2	15	2	0	1	0,13	0,001	1
Z _{th(j-r)D}	7	51	8	0	1	0,13	0,001	1
Z _{th(r-a)}	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1092GB170-4D

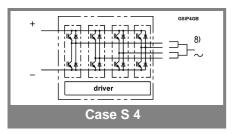
SKiiP[®] 2

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1092GB170-4D

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
 Power supply protected against
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Absolute Maximum Ratings		a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V _{S1}	stabilized 15 V power supply	18	V	
V _{S2}	unstabilized 24 V power supply	30	V	
V _{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V _{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	7	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	Characteristics (T _a =				
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V _{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+590	290+590*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	220+430	220+430*f/f _{max} +0,85*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V _{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage	1000			A
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1250		A
I _{TRIPLG}	ground fault protection				А
T _{tp}	over temperature protection	110		120	°C
UDCTRIP	trip level of U _{DC} -protection	1200			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

