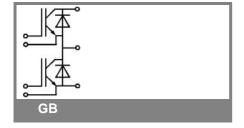
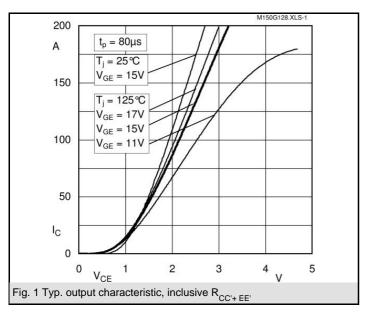


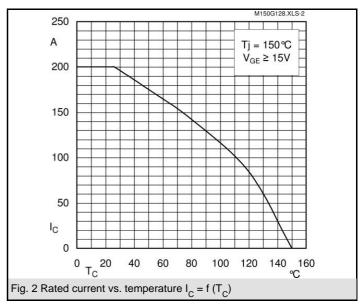
SPT IGBT Modules

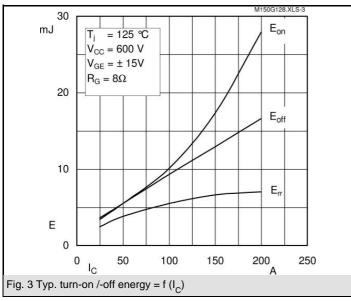
SKM 150GB128D

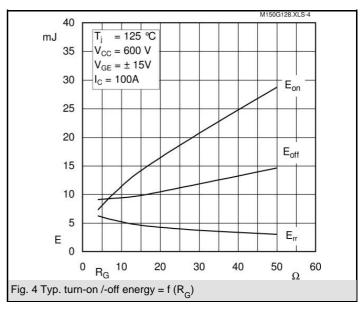
Features

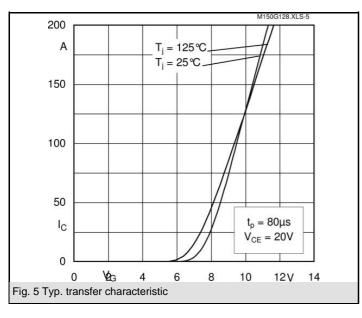

- Homogeneous Si
- SPT = Soft punch-through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

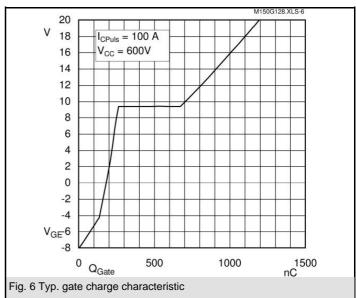

Typical Applications

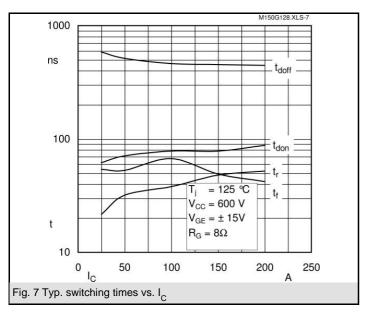

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

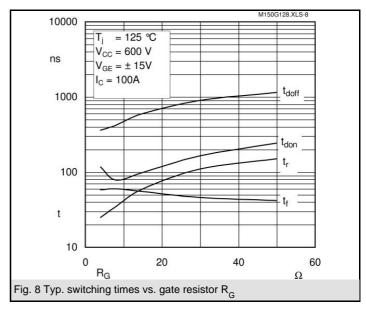

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise	c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	$T_c = 25 (80) ^{\circ}C$	200 (140)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (280)	Α					
V_{GES}	r	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}C$	150 (100)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (280)	Α					
I_{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1100	Α					

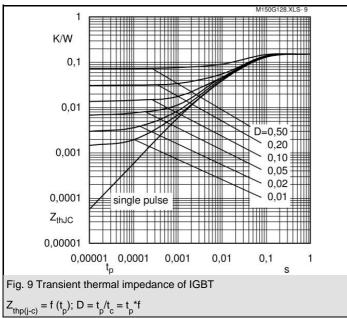

		T = 25 °C	unlana at	honvioo on	ooified		
Characteristics		$\Gamma_{\rm c}$ = 25 °C, unless otherwise specified			ecinea		
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,2	0,6	mA		
V _{CE(TO)}	T _j = 25 (125) °C			1,15 (1,05)	V		
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		9 (12)	12 (15)	mΩ		
V _{CE(sat)}	$I_C = 100 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		1,9 (2,1)	2,35 (2,55)	V		
C _{ies}	under following conditions		8,1		nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1,2		nF		
C _{res}			1,1		nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _C = 100 A		80		ns		
t _r	$R_{Gon} = R_{Goff} = 8 \Omega, T_j = 125 °C$		40		ns		
t _{d(off)}	V _{GE} = ± 15 V		460		ns		
t _f			65		ns		
$E_{on} (E_{off})$			10 (9)		mJ		
Inverse diode							
$V_F = V_{EC}$	$I_F = 100 \text{ A}; V_{GE} = 0 \text{ V}; T_i = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5 (2,3)	V		
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$		1,1	1,45 (1,25)	V		
r _T	T _j = 25 (125) °C		9	13 (11)	mΩ		
I _{RRM}	I _F = 100 A; T _j = (125) °C		(145)		Α		
Q_{rr}	di/dt = 3600 A/µs		(16,5)		μC		
E _{rr}	$V_{GE} = 0 V$		(5,5)		mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,15	K/W		
R _{th(j-c)D}	per Inverse Diode			0,3	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
M_t	to terminals M6	2,5		5	Nm		
w				325	g		

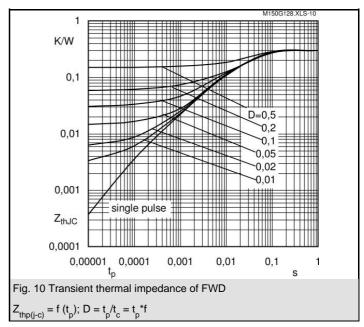


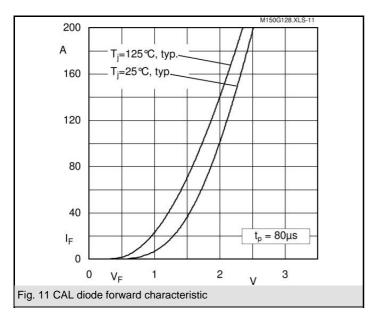


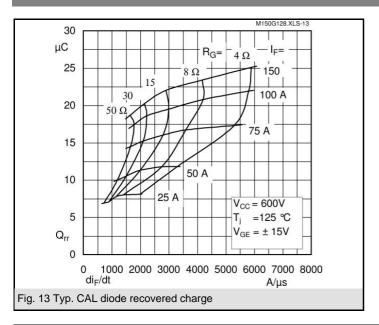


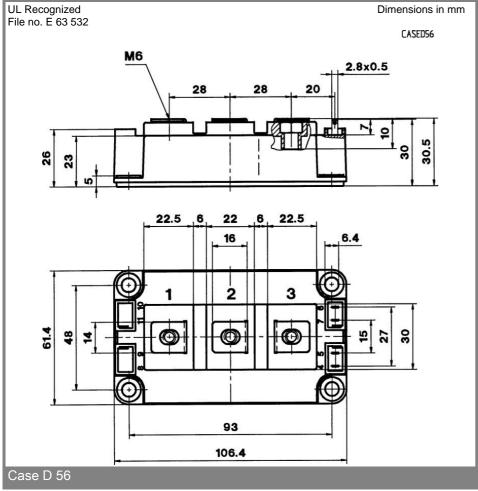


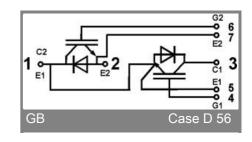












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.