

MiniSKiiP[®]2

3-phase bridge inverter

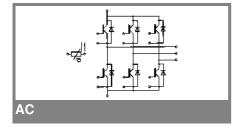
SKiiP 23AC126V1

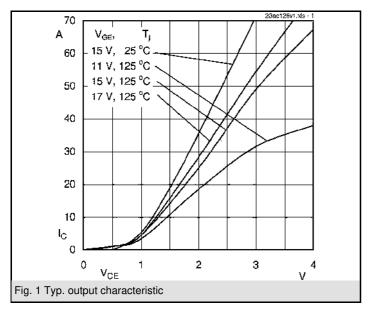
Preliminary Data

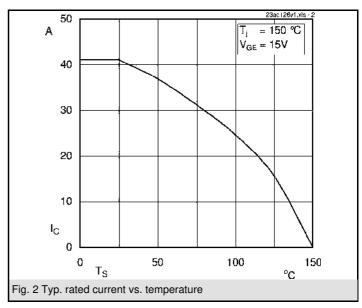
Features

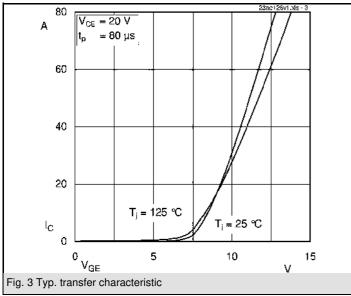
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

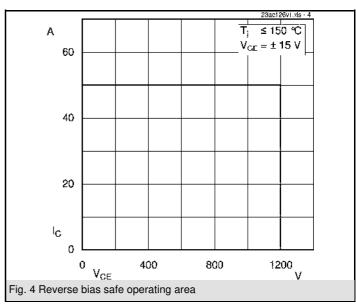
Typical Applications

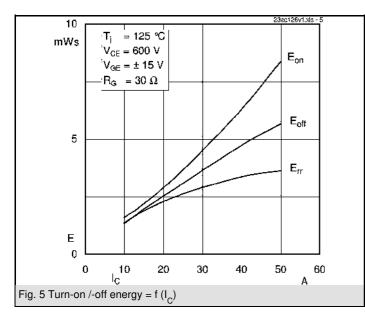

- Inverter up to 16 kVA
- Typical motor power 7,5 kW

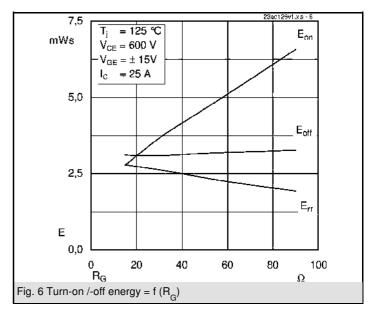

Remarks

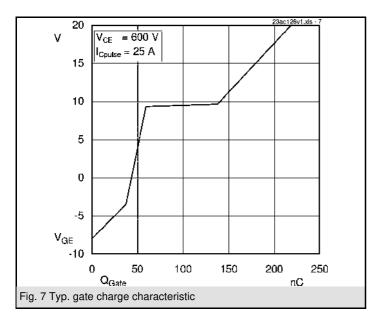

• V_{CEsat} , V_F = chip level value

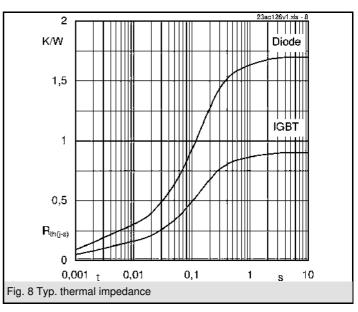

Absolute Maximum Ratings T _S = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V _{CES} I _C	T _s = 25 (70) °C	1200 41 (31)	V A				
I _{CRM} V _{GES}	$T_s = 25 (70) ^{\circ}C$ $t_p \le 1 \text{ ms}$	50 ± 20	A V				
T _j		-40+150	°C				
Diode - Inverter							
I _F I _{FRM}	$T_s = 25 (70) ^{\circ}C$ $t_p \le 1 \text{ms}$	30 (22) 50	A A				
T _j	Ţ,	-40+150	°C				
$\begin{matrix} I_{tRMS} \\ T_{stg} \\ V_{isol} \end{matrix}$	per power terminal (20 A / spring) $T_{op} \leq T_{stg}$ AC, 1 min.	100 -40+125 2500	A °C V				

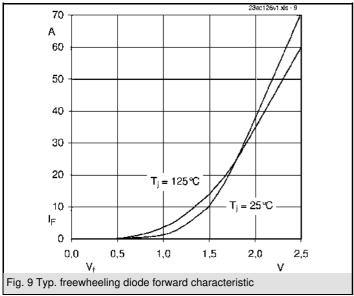

Characteristics		T _S = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter									
V_{CEsat}	I _{Cnom} = 25 A, T _i = 25 (125) °C	1	1,7 (2)	2,1 (2,4)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 1 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V				
r _T	$T_{j} = 25 (125) ^{\circ}C$		28 (44)	36 (52)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,8		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,3		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,2		nF				
$R_{th(j-s)}$	per IGBT		0,9		K/W				
t _{d(on)}	under following conditions		80		ns				
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns				
t _{d(off)}	I _{Cnom} = 25 A, T _i = 125 °C		480		ns				
t _f	$R_{Gon} = R_{Goff} = 30 \Omega$		85		ns				
E _{on}	inductive load		3,7		mJ				
E _{off}			3,1		mJ				
Diode - Inverter									
$V_F = V_{EC}$	I _{Fnom} = 25 A, T _i = 25 (125) °C		1,8 (1,8)	2,1 (2,2)	V				
V _(TO)	T _i = 25 (125) °C		1 (0,8)	1,1 (0,9)	V				
r _T	T _i = 25 (125) °C		32 (40)	40 (52)	mΩ				
$R_{th(j-s)}$	per diode		1,7		K/W				
I _{RRM}	under following conditions		35		Α				
Q _{rr}	I _{Fnom} = 25 A, V _R = 600 V		6		μC				
Err	V _{GE} = 0 V, T _i = 125 °C		2,6		mJ				
	di _F /dt = 1000 A/μs								
Temperat	Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanical Data									
m			65		g				
M_s	Mounting torque	2		2,5	Nm				

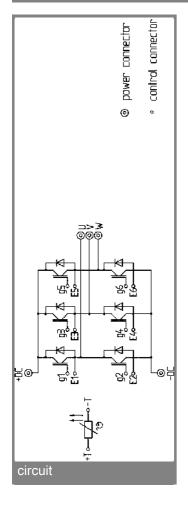


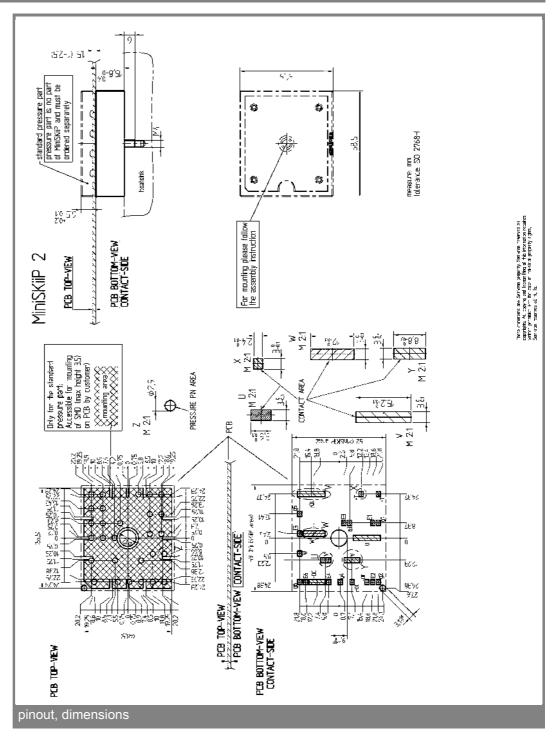












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.