Power Modules, Passivated Assembled Circuit Elements, 25 A

PACE-PAK (D-19)

PRODUCT SUMMARY	
I_{O}	25 A
Type	Modules - Thyristor, Standard
Package	PACE-PAK (D-19)
Circuit	Single phase, hybrid bridge common cathode, Single phase, hybrid bridge doubler connection, Single phase, all SCR bridge

FEATURES

- Glass passivated junctions for greater reliability
- Electrically isolated base plate
- Available up to $1200 \mathrm{~V}_{\text {RRM }} / V_{\text {DRM }}$
- High dynamic characteristics
- Wide choice of circuit configurations
- Simplified mechanical design and assembly
- UL E78996 approved
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-P100 series of integrated power circuits consists of power thyristors and power diodes configured in a single package. With its isolating base plate, mechanical designs are greatly simplified giving advantages of cost reduction and reduced size.
Applications include power supplies, control circuits and battery chargers.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
I_{0}	$85^{\circ} \mathrm{C}$	25	A
$\mathrm{I}_{\text {TSM }}$	50 Hz	357	A
	60 Hz	375	
$1^{2} \mathrm{t}$	50 Hz	637	$A^{2} \mathrm{~s}$
	60 Hz	580	
$\mathrm{I}^{2} \sqrt{ } \mathrm{t}$		6365	$\mathrm{A}^{2} \sqrt{ } \mathrm{~s}$
$\mathrm{V}_{\text {DRM }}, \mathrm{V}_{\text {RRM }}$		400 to 1200	V
$\mathrm{V}_{\text {ISOL }}$		2500	V
T_{J}	Range	-40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$		-40 to 125	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS			
TYPE NUMBER	$\mathrm{V}_{\text {RRM }} / \mathrm{V}_{\text {DRM }}$, MAXIMUM REPETITIVE PEAK REVERSE AND PEAK OFF-STATE VOLTAGE V	$V_{\text {RSM }}$, MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE v	$I_{\text {RRM }}$ MAXIMUM AT T_{J} MAXIMUM mA
VS-P101, VS-P121, VS-P131	400	500	10
VS-P102, VS-P122, VS-P132	600	700	
VS-P103, VS-P123, VS-P133	800	900	
VS-P103, VS-P124, VS-P134	1000	1100	
VS-P105, VS-P125, VS-P135	1200	1300	

VS-P100 Series
Vishay Semiconductors

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum DC output current at case temperature	Io	Full bridge			25	A
					85	${ }^{\circ} \mathrm{C}$
Maximum peak, one-cycle non-repetitive on-state or forward current	$I_{\text {TSM }}$, IFSM	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_{J}=T_{J}$ maximum	357	A
		$\mathrm{t}=8.3 \mathrm{~ms}$			375	
		$\mathrm{t}=10 \mathrm{~ms}$	100 \% VRRM reapplied		300	
		$\mathrm{t}=8.3 \mathrm{~ms}$			315	
Maximum $\mathrm{I}^{2} \mathrm{t}$ for fusing	$1^{2} \mathrm{t}$	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied		637	A^{2} s
		$\mathrm{t}=8.3 \mathrm{~ms}$			580	
		$\mathrm{t}=10 \mathrm{~ms}$	100 \% VRRM reapplied		450	
		$\mathrm{t}=8.3 \mathrm{~ms}$			410	
Maximum $\mathrm{I}^{2} V_{t}$ for fusing	$12 \sqrt{t}$	$\mathrm{t}=0.1 \mathrm{~ms}$ to 10 ms , no voltage reapplied $\mathrm{I}^{2} \mathrm{t}$ for time $\mathrm{tx}=\mathrm{I}^{2} \mathrm{~V} \mathrm{t} \cdot \sqrt{ } \mathrm{tx}$			6365	$A^{2} \sqrt{ }{ }^{\text {s }}$
Maximum value of threshold voltage	$\mathrm{V}_{\text {T(TO) }}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			0.82	V
Maximum level value of on-state slope resistance	$\mathrm{r}_{\mathrm{t} 1}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, average power $=\mathrm{V}_{\text {(TO) }} \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}+\mathrm{r}_{\mathrm{t}}+\left(\mathrm{I}_{\text {(RMS) }}\right)^{2}$			12	$\mathrm{m} \Omega$
Maximum on-state voltage drop	$\mathrm{V}_{\text {TM }}$	$\mathrm{I}_{\text {TM }}=\pi \times \mathrm{I}_{\text {T(AV) }}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.35	V
Maximum forward voltage drop	V_{FM}	$\mathrm{I}_{\text {FM }}=\pi \times \mathrm{I}_{\text {F(AV) }}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.35	V
Maximum non-repetitive rate of rise of turned-on current	dl/dt	$\begin{aligned} & \mathrm{T}_{J}=125^{\circ} \mathrm{C} \text { from } 0.67 \mathrm{~V}_{\text {DRM }} \\ & \mathrm{I}_{\mathrm{TM}}=\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV},}, \mathrm{I}_{\mathrm{g}}=500 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}<0.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{p}}>6 \mu \mathrm{~s} \\ & \hline \end{aligned}$			200	A/ $/ \mathrm{s}$
Maximum holding current	I_{H}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ anode supply $=6 \mathrm{~V}$, resistive load, gate open			130	mA
Maximum latching current	IL	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ anode supply $=6 \mathrm{~V}$, resistive load			250	

BLOCKING							SYMBOL	TEST CONDITIONS	VALUES	UNITS
PARAMETER	$\mathrm{dV} / \mathrm{dt}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, exponential to $0.67 \mathrm{~V}_{\text {DRM }}$ gate open	200	$\mathrm{~V} / \mu \mathrm{s}$						
Maximum critical rate of rise of off-state voltage	$\mathrm{I}_{\text {RRM }}$, $\mathrm{I}_{\text {DRM }}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, gate open circuit	10	mA						
Maximum peak reverse and off-state leakage current at $\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\text {DRM }}$	$\mathrm{I}_{\text {RRM }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	100	$\mu \mathrm{~A}$						
Maximum peak reverse leakage current	2500	V								
RMS isolation voltage	$\mathrm{V}_{\text {ISOL }}$	50 Hz, circuit to base, all terminals shorted, $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{~s}$								

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum peak gate power	P_{GM}			8	W
Maximum average gate power	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$			2	
Maximum peak gate current	I_{GM}			2	A
Maximum peak negative gate voltage	$-V_{G M}$			10	V
Maximum gate voltage required to trigger	V_{GT}	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	Anode supply = 6 V resistive load	3	V
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		1	
Maximum gate current required to trigger	I_{GT}	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$		90	
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		60	mA
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		35	
Maximum gate voltage that will not trigger	V_{GD}	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, rated $\mathrm{V}_{\text {DRM }}$ applied		0.2	V
Maximum gate current that will not trigger	I_{GD}			2	mA

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction operating and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-40 to 125	${ }^{\circ} \mathrm{C}$
Maximum thermal resistance, junction to case per junction	$\mathrm{R}_{\text {thJC }}$	DC operation	2.24	
Maximum thermal resistance, case to heatsink	$\mathrm{R}_{\text {thcs }}$	Mounting surface, smooth and greased	K / W	
Mounting torque, base to heatsink ${ }^{(1)}$			0.10	
Approximate weight			4	
Case style			58	

Note

(1) A mounting compound is recommended and the torque should be checked after a period of 3 hours to allow for the spread of the compound

Fig. 1 - Current Ratings Nomogram (1 Module Per Heatsink)

Fig. 2 - On-State Power Loss Characteristics

Fig. 3 - On-State Power Loss Characteristics

Fig. 4 - Current Ratings Characteristics

93754_05
Instantaneous On-State Voltage (V)
Fig. 5 - On-State Voltage Drop Characteristics

Fig. 6 - Maximum Non-Repetitive Surge Current

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Thermal Impedance $Z_{\text {thJC }}$ Characteristics

Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Module type
3 - Current rating
$1=25$ A DC (P100 Series)
4 = 40 A DC (P400 Series)
4 - Circuit configuration
0 = Single Phase, Hybrid Bridge Common Cathode
2 = Single Phase, Hybrid Bridge Doubler Connection
3 = Single Phase, all SCR Bridge
5 - Voltage code
$1=400 \mathrm{~V}$
$2=600 \mathrm{~V}$
$3=800 \mathrm{~V}$
$4=1000 \mathrm{~V}$
$5=1200 \mathrm{~V}$
6 - K = Optional Voltage Suppression
$7 \quad$ - \quad W $=$ Optional Freewheeling Diode

CIRCUIT CONFIGURATION

CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	SCHEMATIC DIAGRAM	TERMINAL POSITIONS
Single phase, hybrid bridge common cathode	0		
Single phase, hybrid bridge doubler connection	2		
Single phase, all SCR bridge	3		

CODING (1)		CIRCUIT CONFIGURATION CODE	BASIC SERIES	WITH VOLTAGE SUPPRESSION	WITH FREEWHEELING DIODE
VOLTAGE SUPPRESSION AND FREEWHEELING DIODE					
Single phase, hybrid bridge common cathode	0	P 10.	$\mathrm{P} 10 . \mathrm{K}$	$\mathrm{P} 10 . \mathrm{W}$	P10.KW
Single phase, hybrid bridge doubler connection	2	P 12.	$\mathrm{P} 12 . \mathrm{K}$	-	-
Single phase, all SCR bridge	3	P 13.	$\mathrm{P} 13 . \mathrm{K}$	-	-

Note

${ }^{(1)}$ To complete code refer to Voltage Ratings table, i.e.: For 600 V P10.W complete code is P102W

LINKS TO RELATED DOCUMENTS	
Dimensions	$\underline{w w w . v i s h a y . c o m / d o c ? 95335 ~}$

D-19 PACE-PAK

DIMENSIONS in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

```
Vishay:
    VS-P101W VS-P103KW VS-P103W VS-P104W VS-P105W VS-P123 VS-P132 VS-P102W VS-P103 VS-P102
VS-P105KW VS-P104 VS-P134 VS-P133 VS-P105 VS-P121 VS-P125 VS-P102KW VS-P124 VS-P135 VS-P101
    VS-P122 VS-P131 VS-P101KW
```

